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Accurately modeling solid-state dewetting in materials with strong crystalline anisotropy is an open problem in
materials science with importance for both the manufacturing and reliability of nano-scale devices. In this work,
we propose and demonstrate a level-set method framework for simulating solid-state dewetting which is capable
of modeling systems with strongly anisotropic surface energies and diffusivities. Surface energy anisotropy is
handled through the use of the Cahn-Hoffman vector construction, and surface self-diffusivity anisotropy is

handled through the use of a diffusivity tensor. We benchmark our method against isotropic phenomena with
analytical descriptions and go on to demonstrate that our method is capable of reproducing a host of experi-
mentally observed behaviors in strongly anisotropic single-crystal materials.

1. Introduction

Experimental observations reveal that many thin films attached to
substrates such as metals on oxidized silicon, single crystal Si on SiOg,
and Ni on MgO or Sapphire, structures [1-6] are unstable with respect to
islands of the thin film material. In general, the evolution of such sys-
tems toward stable configurations could be mediated by
evaporation-condensation, volume diffusion, or surface self-diffusion
[7]. However, experimental results in systems like those mentioned
above often show that mass transport is dominated by surface
self-diffusion [1-6,8-10]. Experiments also provide compelling evi-
dence that crystalline anisotropy strongly influences this evolution [2-6,
8-12].

For large area films and other far from equilibrium features
patterned from these films, this morphological evolution can be highly
driven and give rise to various instabilities, including Rayleigh-like in-
stabilities [13], a fingering instability [14,15], and a corner instability
[9,16,17]. Accurately modeling the full continuum of dewetting be-
haviors, especially in systems with strong anisotropy, is an open problem
in materials science.

If surface tension and surface diffusivity were isotropic, morpho-
logical evolution would be governed by the Mullins equation, which
states that the velocity of evolving surfaces along their normal direction
is proportional to the surface Laplacian of curvature [18]. As with other
4th order partial differential equations, traditional numerical methods

for solving the Mullins equation require very small time steps to prevent
numerical instability [19]. For crystalline films, anisotropy necessitates
a reformulation of the Mullin’s equation. In addition to facets, corners,
and edges being non-differentiable, the chemical potential is not directly
related to the geometric mean curvature [20]. Furthermore, anisotropic
surface diffusivities require that the scalar surface diffusivity be replaced
with a surface diffusivity tensor. Experimental observations of dewetting
wires and films also show behaviors which include topological changes
that are troublesome for Lagrangian front-tracking numerical methods.

A deeper understanding of the effects of crystalline anisotropy on
solid state dewetting is important because of both the striking behaviors
to which it gives rise and the impact these behaviors have on the use of
dewetting to create intermediate structures for use in fabricating devices
[8-10]. In anisotropic systems, retracting rims develop faceted profiles
(see Fig. 1) [21], and small deviations in the alignment of patterned
features relative to a film’s crystalline axes can yield profoundly
different behavior [13,15,22]. While this rich and complex behavior is
of interest to both experimentalists and modelers, improved numerical
methods are required to predict and understand these phenomena.

To this end, we present a level-set numerical approach for simulating
the morphological evolution of anisotropic materials undergoing dew-
etting and surface diffusion mediated evolution driven by capillarity
more generally. The method includes the effects of anisotropic surface
energy and an anisotropic surface diffusion coefficient tensor. Our
method reproduces experimental observations, including faceting and
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topological transitions. We have also tested our method in the absence of
anisotropy and show that we can reproduce previous analytical, nu-
merical, and computational results. Example simulations using this code
are openly available on Github [71].

2. Background

For isotropic systems, there are many examples of modeling behavior
governed by the Mullins equation. Mullins’ equation was initially
applied to grain boundary grooving [18] and the evolution of surfaces of
revolution [23,24], including Rayleigh instabilities [25], which have
since been modeled in more complex systems such as materials in con-
tact with a substrate [26] and materials constituting an intragranular
phase [27]. Brandon and Bradshaw [1] conducted early work on
solid-state dewetting, in which they developed a simple analytical model
in which a straight dewetting edge’s retraction distance scales with />,
Computational [21,28,29] and experimental [12,14] work reproduced
approximate t%/5 scaling at sufficiently long times. Nichols later showed
that finite cylinders are also prone to ovulation [30]—the repeated
pinching off and spheroidization of a cylinder’s ends—in addition to the
Rayleigh instability. Smereka developed a level-set method to model
evolution mediated by surface self-diffusion in isotropic systems, but did
not model interactions with substrates [19]. Jiang et al. also conducted
phase-field simulations of several isotropic solid-state dewetting phe-
nomena [31].

Other approaches that go beyond the direct application of the Mul-
lins equation are needed for anisotropic surface energies. The “crystal-
line method” enables modeling evolution through the movement,
creation, and annihilation of facets in fully-faceted systems [32-34].
This method has been used to study edge retraction in fully faceted
systems, including the effects of assigning different diffusivities to
different facets [21]. Dornel et al. constructed an anisotropic extension
to the method in Ref. [28] and explored edge retraction behavior in Si
films [35]. Burger et al. utilized anisotropy in level-set method simula-
tions [36]. Jiang et al. simulated anisotropic dewetting using a
finite-element method [37,38] and Pierre-Louise et al. used a Kinetic

A) As Patterned Film
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Monte Carlo (KMC) method to simulate dewetting [39-41]. Kim and
Thompson used KMC to study the orientational dependence of

single-crystal nanowire stability [13]. The ?(ﬁ)-construction (described
below) was used in reference [36], which took a variational level-set
approach to modeling both mean curvature flow and surface diffusion
(though not dewetting, as there was no substrate in their systems) and in
[37,38], which use finite-element methods to model anisotropic dew-
etting. Both methods demonstrated simulations with regularized hard
surface energy anisotropy, though neither placed emphasis on using y(n)
derived from real physical systems. However references [37,38] provide
many examples using technologically relevant geometries, including
long wires and edges. Wang and Karma [42] studied the stability of
faceted crystalline wires using the Phase Field (PF) method, showing
that such wires can be susceptible to a finite-amplitude, nonlinear
instability. All the methods described above have specific strengths and
drawbacks and are each best-suited to particular classes of problems. In
general, the crystalline method works well for modeling the behavior of
fully-faceted systems, but is unable to model systems which contain any
rounded edges or corners. Finite element methods work well for a large
set of geometries and material properties but can’t easily capture to-
pological changes such as hole formation or wire fragmentation without
addressing them on a case-by-case basis. KMC naturally handles all to-
pology changes, and geometric features emerge from the arrangement of
the atoms in the simulation. However, KMC is quite computationally
intensive, and it can be difficult to map macroscopic material properties,
such as surface energy and diffusivity, into the atomistic KMC model. PF
simulations share many of the same strengths as those employing LSM,
including implicit handling of topological changes and the ability to use
macroscopic material properties in the model. PF models can also make
use of Lagrange multipliers to enforce volume conservation [42], while
more elaborate approaches have been required to achieve strict volume
conservation in LSM simulations [43-45]. However, PF models make
use of a diffuse interface which makes it more difficult to model sharp
edges and corners, in comparison to LSM models. As detailed below, we
were able to employ numerical techniques in our LSM simulations to
significantly, though not completely, mitigate traditional volume

Fig. 1. Schematic illustration of retraction of a film edge in isotropic and strongly anisotropic films. Material dewetted from the substrate accumulates in a rim that
propagates into the film. A) The as-patterned film. B) Intermediate dewetting morphology for an isotropic system. C) The same intermediate morphology for a simple
anisotropic system. D) An isotropic system which has dewetted to and through the point of pinch-off. In isotropic systems, a valley always forms behind the rim while
the extent of valley formation in anisotropic systems is determined by material properties. This will be discussed at greater length later in the text.
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conservation issues with LSM while retaining the ability to model sharp
interfaces, making LSM a compelling choice for modeling solid-state
dewetting.

In the absence of other potentials, surface self-diffusion is driven by
gradients in weighted mean curvature (x,), and the Mullins equation

becomes v, = VS-<D(ﬁ) ;%vsx,), where D(7i) = RT(R)D(R), 1 R(7)

d 0 0
for Dyarural Of the form 0 do O for an orthonormal basis V1, V2, 1 and
0O 0 O
an appropriate change of basis matrix R(7). In practice, we lump all the
materials properties together and use an equation of the form v, =
Vs-(B(f)Vik,), where B(l) incorporates anisotropic diffusivity. Taylor
[20] defines «, as “the rate of decrease of surface free energy with
respect to volume swept out by the motion of the surface.” There are
several mathematically equivalent formulations of «,, of which Taylor
[20] gives an exhaustive review, but the formulation of x, used
throughout this work is the divergence of the Cahn-Hoffman vector
?(’ﬁ), [46]. For an isotropic system, x, = k = V-?(ﬁ) = yV-n. The
Cahn-Hoffman vector, commonly denoted as ?(ﬁ), is the gradient of the
homogeneous extension of the surface energy function I'(An) = Ay (7).
Fig. 2 walks through this construction graphically. The vector compo-
nents of ?(ﬁ), {éx: &,&;}, are derivatives of a surface’s free energy
relative to changes of its area and orientation. These vector components
are analogous to the chemical potentials of compounds in solution,
which are derivatives of a solution’s total free energy with respect to
changes in the composition. This analogy is explored in detail in refer-
ence [47]. For a given y(7), the curve ?(ﬁ) plotted for all surface ori-
entations 7, contains the Wulff shape with the addition of “ears” or
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“swallowtails” for the unstable orientations, if there are any (i.e., the
case of sharp edges on the Wulff shape), see Fig. 2(F). These ears are the
orientation-space analog of a miscibility gap in alloys [47].

In simulations of systems with such unstable orientations, we use a

Willmore regularization term [48] — &2 (Kss + %K3> . This regularization

appears to have first been proposed in this context in Ref. [49] and is
used in many studies of anisotropic surface evolution including Refs.
[36-38]. Refs [38,50] provide particularly clear explanations of this
regularization. The regularization is the analog to the square-gradient
term in diffuse-interface theories (e.g., Cahn-Hilliard [51] and
Allen-Cahn [52] functionals). Without regularization, surfaces with
unstable orientations would develop facets or pyramids of arbitrar-
y—and possibly infinitesimal—length scale (i.e., varifolds [53]). We
find that the magnitude of the regularization coefficient sets the length
scale of the faceting instability in our simulations, as expected. In many

of our simulations, we construct the convex portion of ?(ﬁ) from an
observed Wulff shape, and we find that the exact functional form of the

non-convex parts of ?(ﬁ) (i.e., the “ears”) plays a very negligible role in
the results.

Our simulations are based on the level-set method, an Eulerian
approach for simulating the evolution of surfaces, developed by Osher
and Sethian [54]. In the level-set method, the surface being simulated is
the zero isocontour, or level-set, of a function ¢( X ) (usually chosen to be
a signed distance function). Numerically, surface evolution is imple-
mented by incrementally updating ¢(X) by computing % + V-V = 0
for small time-steps (see Fig. 3). Level set methods are useful for
studying morphological evolution, particularly when topological
changes occur, as the implicit representation of the evolving surface
naturally handles such changes without special treatment. Another

Fig. 2. The &-vector construction. From left to right, top to bottom: A) The surface energy function y(7i) shown as a polar plot. B) An alternative representation as a
scalar function on the unit circle. C) An extension of the scalar function over all space such that y(An) = Ay(n), D) Ay(n) isocontours clarify where y is changing most

rapidly. E) White arrows indicate ?(H’) for n1 of magnitude 1, where ?(H’) is the gradient of Ay(n). F) A plot of just ?(ﬁ) from the origin, which yields the traditional
&-vector construction. The convex portion of the black curve in F) is gives the equilibrium shape.
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Fig. 3. The level-set method implicitly encodes the location of interfaces (indicated by the blue outlines) in the values of a signed distance function, ¢(X,t). The

=
magnitude of ¢ gives the distance from X to the closest interfacial point and the sign indicates whether (x,t) is inside (¢(X,t) < 0) or outside (¢(X,t) > 0) an
interface. Here, two neighboring circles grow and merge (right, bottom to top). The evolution of ¢ is shown in the center of the figure, with the time axis oriented

vertically. Three Individual time steps are highlighted for clarity.

benefit is that geometric quantities, such as the normal vector and
curvature, are naturally defined in terms of derivatives of ¢(X). Naive
implementations of LSM are plagued by issues of stability and volume
conservation arising from distortions to ¢(X), which cause it to locally
deviate from a signed distance function. Redistancing methods, which
are used in our simulations and discussed in detail below, combat this
problem by approximately restoring ¢(X) to a signed distance function
without moving the zero level-set. A complimentary approach described
by Zhao et al. [55] and first implemented by Smereka [19] removes the
distortionary components of calculated quantities, by solving g—f +
sign(¢) %-Vg, where g can be any calculated quantity such as interface

velocity or «,.
3. Methods

For an LSM simulation of surface self-diffusion driven by the gradient
of weighted mean curvature, the governing equation for the time-
evolution of ¢(X,t) is

op ~
= — (Vs (B(R)Vsk,)) Ve 1

As discussed above, B(n) incorporates the effect of anisotropic
diffusivity, while k, incorporates the effect of anisotropic surface energy.
This equation is numerically integrated forward in time using finite
differences. Conceptually, in fact, LSM simulations do nothing more

than integrate this governing equation forward in time. However, in
practice, numerically integrating this equation forward in time without
performing additional operations, discussed below, quickly leads to
numerical instabilities and poor volume conservation caused by
unphysical distortions to ¢(). These distortions arise from erroneous
values for physical quantities calculated away from the interface. For
example, only the calculated values of k, on the ¢(X) = 0 level-set have
physical meaning, and the ¢(X) = 5 level-set will tend to have much
different values of ,. If the differing values of k, on other level-sets, q&(?,
t) # 0, are not corrected, these level-sets won’t move in sync with the
zero-level-set, and ¢ (X, t) will become distorted, negatively impacting
the accuracy of the simulation. We utilize the correction method
developed by Smereka[19] and Zhao et al. [55]. This approach replaces
non-interfacial values of both x, and surface velocity with values ob-
tained by extending the physically meaningful interfacial values out into
a band of points encapsulating the interface. Smereka proposes a specific
algorithm for performing this extension, but in our testing, we obtained
better results using Adalsteinsson and Sethian’s extension algorithm
[56] based on the Fast Marching Method (FMM) [57]. In all of the work
presented here, we used the implementation of Adalsteinsson and
Sethian’s algorithm found in the scikit-fmm Python package [58]. While
these extension steps reduce unphysical distortions to ¢(x), we also
periodically redistanced ¢ () to reset it to a signed distance function. In
our testing, we found that Sussman’s redistancing method [59] usually
yields the best results, as opposed to fast marching based redistancing,
and the results presented here are all from simulations making use of
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Sussman’s method.

Numerically, we combine second order spatial derivatives with first
order time stepping. Unfortunately, the central difference stencils used
to compute V¢ (), and thus ri(x’), yield the same normal vector for a
flat surface and for a sawtooth surface with the same average orienta-
tion. During development, this led to non-physical oscillations devel-
oping on thermodynamically stable surfaces in some strongly
anisotropic simulations. To combat this, we add a small term that goes as
V2¢(X) to «,, calculated using second-order central differences. This
term is similar to the curvature of the surface, so setting it too large will
cause non-physical smoothing in anisotropic systems. We still found this
smoothing operator to yield superior results to that used in Ref. [19],
which is non-local in nature and thus introduced clearly non-physical
distortions in our testing; Ref. [19] acknowledges the problems posed
by these distortions. To increase computational performance, the size of
the time step taken for each iteration is adaptively determined by At =
aAx/|S| . Where Ax is the grid spacing, |S|,,, is the maximum of the
absolute value of the interface velocity, and « is a scaling factor less than
1. In practice, good results are often obtained with a ~ 0.01. In 3D
simulations, we found the performance cost of redistancing after every
iteration was outweighed by the larger « it allowed us to use, while in
two dimensions, such frequent redistancing was not always necessary.
We found that a having too large a value led to volume drifting upward
while setting it too small led to downward volume drift. Therefore, in
most simulations, we adjust a after each time step by a very small
amount, negatively proportional to the preceding time step’s change in
volume as a percentage of the initial volume. We find that « tends to
trend downward during periods of topological change, such as pinch-off
or ovulation, and then rebound when evolution is less extreme. If a
climbs to too high a value, the simulation can become unstable, and if it
becomes too low, the simulation takes too long to run, so we also set
upper and lower bounds on a. In simulations in which ¢ was made
adaptive in this way, changes in volume over the course of the simula-
tion were often less than a percent, and no simulations presented here
had volume changes greater than a few percent. In comparison to
techniques that strictly enforce global volume conservation [42,43,60],
our method for mitigating volume loss doesn’t introduce non-diffusive
mass transport, a criterion we prioritized over perfect global volume
conservation. In fact, the authors of [42] note that their volume con-
servation constraint, “is used to avoid slow surface diffusion dynamics,”
which is beneficial for a stability analysis but would present problems
for our application. For all volume measurements in this paper, we
follow Sussman’s use of a smoothed Heavyside function [59] to define
the volume of a body characterized by a signed distance function. For
more details on numerical implementation, see the appendix.

As discussed above, surface energy anisotropy is incorporated into

the simulations through the Cahn-Hoffman vector ?(ﬁ). For crystalline
systems, calculating ?(ﬁ) can be computationally expensive, so values

of ?(ﬁ) for such systems were precomputed and accessed via a lookup
table. For 3D simulations, these lookup tables were generated using the
method proposed in Smith et al. [61]. In 2D, we found that lookup tables
with 10% to 10° points were sufficiently dense while in 3D, we used
lookup tables with up to about 3 x 10° points for materials for which

very small facets needed to be resolved. In 2D simulations, ?(ﬁ) could
also be interpolated between lookup values by fitting a spline to the
whole lookup table. For simulations which sought to match the behavior
of a specific material, an initial y(n) was created using DFT-calculated
surface energies from Tran, et al. [62]. Non-equilibrium orientations
could be treated in a variety of ways to tune the hardness of the
anisotropy. In each case, the final y(71) was then extended and numeri-

cally differentiated to yield ?(ﬁ), as detailed in the background section.

In other cases, arbitrary functional forms of ?(ﬁ) were created to
explore how surface energy anisotropy affects dewetting-like processes
more generally. For example, we conducted early simulations in a
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fictional simple cubic system with very high surface energy for all but
{100} surfaces (i.e., the Wulff shape was a cube). For simulations of true
dewetting (i.e. simulations in which the evolving material is in contact
with a substrate), we initialize the simulation such that the zero level-set
of () intersects the bounding box of the simulation domain along the
X = Xmax plane. This means that the contact patch between the film and
the substrate is implicitly represented by the triple-line. An additional
plane of ghost values is maintained below the physically meaningful
simulation domain, which helps to more accurately maintain the
zero-flux boundary condition at the substrate. In the vicinity of the
triple-line, these ghost values are set such that ¢(y = ymax + 1) =¢(y =
Ymax) + %'y:ymax' This approach is similar to that used in Ref. [63] but is

distinct in that we do not force the system to have a specific contact
angle. To correctly model the evolution of the triple-line, we set

ia T~ \/n2+n?
K, = V- 5 (H) + (C{vnr 'H/FS —}’VS) Ax—m for

Ymax-plane in the vicinity of the triple-line, where Z;\ = (?(n)n)fr\ -

points in the y =

=~y ~\ A~ —~ . . . . — .
< £ (n)-cr) n, nr is the in-plane normal vector of the triple-line, and cr is

the unit vector defined to be tangent to the evolving surface and
orthogonal to the triple-line while being oriented such that it points

toward the substrate. This is similar to Ref. [37] which derives that EZ
Ar + ygs — vys is the first variation of total free energy of the system with
respect to displacement of the triple-line. In our level-set formulation,
however, the triple-line is represented implicitly, so we incorporate this
quantity into «,, rather than treating the evolution of the triple-line

separately, as is done in Ref. [37]. The geometric factor FV\";% re-
lates the variation of the triple-line to the variation of the surface
element directly above the triple-line. We apply zero-flux boundary
conditions at the triple-line and, in 3D simulations, also prohibit flux
along the triple-line.

4. Results
4.1. Isotropic systems

To benchmark our technique, we simulated edge retraction and the
Rayleigh instability in isotropic systems and compared our results to
theoretical and previous simulations. For the retraction of an isotropic,
semi-infinite film, the retracting rim should develop a smooth profile
composed of a “rim” containing most of the dewetted material followed
by oscillations in film height of decaying amplitude; the first minimum is
often referred to as the valley [28,35] (Fig. 3). Eventually this valley
touches down to contact the substrate, separating the rim from the rest
of the film in a behavior called pinch-off. Starting with an edge like the
one shown in Fig. 1(A), the edge retraction distance initially increases
rapidly but then is expected to evolve to approximately scale as /> [28,
29]. This behavior in isotropic systems, as well as the effect of contact
angle, is explored in depth in [28] and our simulation results match
theirs (Figs. 4 and 5). We also report scaling relations for the valley
depth and rim height which were not explicitly discussed in Refs. [28,
35].

As a second test, we simulated Rayleigh-like instabilities [25] on
free-standing cylinders with isotropic surface energy evolving by surface
diffusion. Perturbations with wavelengths greater than the circumfer-
ence of the wire will grow, eventually breaking the cylinder into spheres
[24]. Our simulation technique reproduced the correct behavior with
small wavelength (1 < 27Ro) perturbations on infinite cylinders
(modeled as finite segments with periodic boundary conditions)
decaying to zero amplitude and perturbations with supercritical wave-
lengths (1 > 27R,) growing and breaking up the wire, see Fig. 6(A) and 6
(B). Perturbations close to 1 = 2v/27Rg grew the fastest, in correspon-
dence to theory [24]. In Fig. 6(C), a long, finite wire was given an
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Fig. 4. Rim profile for an isotropic film with 120° contact angle as it evolves toward and through pinch-off. A) The original as-patterned edge of the film. B)
Development of a rim and valley. C) At the point of pinch-off when the valley touches the substrate. This closely matches the corresponding figure 4 c) in Wong et al.
[28]. Their simulations used a point-tracking method with adaptive resolution and dimensionless units such that their film had an initial thickness of 1. The
simulation shown in this figure was run with resolution such that the initial film thickness was 3.5. For comparison to [28], the spatial dimensions in this figure have
been divided by 3.5 and the time values have been divided by 3.5% (following the same non-dimensionalization of [28]). D) After pinch-off, a wire has formed and the

new edge has developed a rim.

unstable perturbation. The ends of the wire began to retract and pinch
off in the ovulatory manner predicted by Nichols and Mullins [23], but
the middle of the wire still decomposed in a Rayleigh-like fashion.

As another demonstration of our technique, we simulated the growth
of holes in isotropic films (Fig. 7). As expected, these holes maintained
their initially circular shape and developed a rim with a valley behind it,
as in [64]. This behavior will be contrasted with that of anisotropic films
in the next section.

4.2. Effects of anisotropy

We applied our algorithm to anisotropic systems with facets, starting
with simulations of single-crystal Ni, for which there is a large body of
experimental data. Such films can be lithographically patterned with
extremely long, straight edges such that in some cases these experiments
can be modeled in two spatial dimensions (e.g., ignoring the dimension
that runs along the edge of the film). Of particular interest is the
experimental observation that for single-crystal Ni films on MgO, the
edge orientations that retract most slowly are those for which the rim is
bound by equilibrium facets along their length. These orientations are
termed kinetically stable, because edges of other orientations will
eventually facet to become composed of such edges [12]. In Ni (100)
films on MgO, retracting edges with kinetically stable orientations do
not exhibit the formation of a valley [5], while retracting edges with
kinetically stable orientations in (110) Ni films do exhibit valley for-
mation and pinch-off [65]. This disparity exists despite both systems
having equilibrium, low-index top facets, a criterion which past simu-
lation work suggests should be sufficient to suppress valley formation
[21]. To determine if our simulation technique captures the physical
behavior of this system, we first created a surface energy function based
on DFT-calculated values of the surface energy for Ni [62]. For
low-index orientations, this function returned the DFT-calculated value
and returned a linear combination of these energies for intermediate
orientations, ignoring additional energy terms for corners and edges.
The cusps corresponding to equilibrium orientations were very slightly

rounded to prevent ?(ﬁ) from being ill-defined at these orientations,

similar to the smoothing proposed in Bonzel and Preuss [66]. The sur-
face energy of the (110) facet was also reduced by less than 1%, from

2.29 J/m? to 2.28 J/m> (though these quantities are effectively
non-dimensional, as units are not used internally in the simulation), to
ensure that this very small facet wasn’t washed out by the rounding of
the cusps. Viewed along the appropriate cross-section, this anisotropy
function is shown in Fig. 8, which shows that despite the absence of an

evident (011) cusp in y(7), ?(ﬁ) still has an obvious facet. The ability of
our simulation method to accommodate more complex surface anisot-
ropy such as this is one of its core strengths. Following the lead of Jiang
et al. [67], we introduced a Willmore regularization term [48], —

£ <Kss + %K3> , to our chemical potential to give the faceting instability

finite wavelength, as discussed above. In this case, ¢ was simply set to 1.

We then used this y(71) to conduct 2D edge-retraction simulations of
free-standing films to isolate the effects of surface energy and diffusivity
from any confounding effects of triple-line dynamics. Fig. 9 shows the
results of several such simulations, with the wires cut along their long
axis of symmetry for visual clarity. To test our algorithm for anisotropic
diffusivity, we assigned a diffusivity value to each facet. For non-
equilibrium orientations, we treated the surface as being micro-
faceted and found the diffusivity through a weighted inverse sum,
analogous to adding conductance in series. As in experiments, valley
formation occurs in the simulations of (110) films and not in those of
(100) films, even when diffusivity is isotropic. However, by manipu-
lating the diffusivity across the (110) facet, we found that it is a key
parameter for controlling the relative size of the valley that forms in
(110) films. When the diffusivity across this facet is large, a deep, faceted
valley develops. When this diffusivity is low, valley formation is sup-
pressed. Fig. 9(A) and (B) contrast these two scenarios. Experimentally,
valley formation is not observed in Ni (100) films [12], and it is also
absent in our simulations. We attribute this to the much deeper cusp in
y(n) associated with the (100) facets, in comparison with the (110)
facets. Fig. 9(A) and (9 D) demonstrate that the experimentally observed
behavior [12,65,68] of both (110) and (100) films can be accurately
simulated using a single set of surface energy and diffusivity functions.

In three dimensions, experiments and simulations show that the
range of phenomenology to explore is even richer, and the impact of
anisotropy is even more profound. The simulation of a free-standing
wire with strong anisotropy, shown in Fig. 10, demonstrates that the



M.A. L Etoile et al. Acta Materialia 282 (2025) 120368

Retraction Distance vs Time Retraction Distance vs Time

300 1
Slope = 0.408

10?

Retraction Distance
g 8 B § &
Retraction Distance

10*
0
0.0 0.5 1.0 15 20 25 10t 10% 10° 10°
Time led Time
Rim Height vs Time Rim Height vs Time
3x10*

2] %10t Slope = 0.192

10t

\

6x 10°

Rim Height
Rim Height

4x10°
oA
00 0.5 10 15 20 25 10t 10° 10° 10°
Time led Time
Valley Depth vs Time Valley Depth vs Time

Slope = 0.262

10°

Valley Depth
Valley Depth

0.5
0.0
0?0 0j5 1j0 ljS 2j0 2j5 1(‘)‘ 16: 163 16‘
Time led Time
Valley Depth vs Rim Height Valley Depth vs Rim Height

3.514

3.01 Slope = 1.364

10°

Valley Depth
Valley Depth

0 5 10 15 20 25 6x10° 10 2x10* 3x10*
Rim Height Rim Height

Fig. 5. Selected scaling relations for an isotropic edge retraction simulation with 90° equilibrium contact angle (Units scaled to match [28]). Data are plotted from
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Fig. 6. Recreating the isotropic Rayleigh-like instability. A) An infinite wire with an initial perturbation of large amplitude but subcritical wavelength which decays.
B) An infinite wire with an initial perturbation of the same amplitude but supercritical wavelength. This wire breaks up into spherical particles through the Rayleigh-
like instability. C) A long finite wire with a perturbation of super-critical wavelength. The ends of the wire retract while the body of the wire undergoes the Rayleigh-
like instability. Initial wire diameter was set to 100 nm with Dk% =622 m%/Js.
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Fig. 7. An initially circular hole in an isotropic film with yz — yys = 0.6 and yz, = 1. Coloration shows variation in height.

B)
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|

Fig. 8. A) The full surface energy function y(n) derived from DFT values and B) the cross-section of this function used to simulate Ni edge retraction. The insets to the
right close-up plots of y(n) and ?(ﬁ) in the vicinity of the (011) facet. Values are in units of J/m2.

presence of low-energy orientations along the length of the wire can agreement between experiment and simulations using this technique.
suppress the Rayleigh instability and promote ovulation. Reference [62] Reference [69] also demonstrates that strong anisotropy can suppress
explores this phenomenology in detail and demonstrates strong both the Rayleigh instability and ovulation in wires with special,
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Fig. 9. 2D simulations of retracting film edges. Note very different x and y scales. Full wires were 360 units long to start and 11 units tall. As discussed in the text, the
films in these simulations are free-standing to avoid confounding substrate effects. Only the top half of the wires is shown because the simulation is symmetric in this
direction. A) Most closely matches experiments [12] [59]1,[62, Ch. 6], and D) shows that experimental behavior (suppressed valley formation) in (100) films can be
reproduced using the same parameters as A). The upper-left corner of each subplot shows the diffusivity function used in the simulation, while the lower-left corner
shows how the orientation of the strip corresponds to the equilibrium Wulff-shape (based on the function shown in Fig. 6 (a-c)).
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Fig. 10. Long Ni wire with short wavelength perturbation. Wire is bound by (001) and (011) -type facets along its length. These facets suppress the Rayleigh-like

instability but allow for ovulation. Initial wire diameter was set to 100 nm with D % 9 =6.2721

high-stability orientations. In the simulation shown in Fig. 10, ?(ﬁ) was
again based on the same DFT values as above, although only the three
lowest energy families of facets—(001), (011), and (111)—were used
and they were configured to have small spinodes at all corners and
edges.

Another example of this simulation technique recovering complex,
anisotropic behavior is shown in Fig. 11. In this simulation, a film with a
(100) top surface is initialized with a circular hole. However, this hole

m®/J s for all A.

quickly grows to its kinetic Wulff shape [7,11] which in this case is
bound by long edges with [110] in-plane normals and truncated corners
with [100] in-plane normals. As the hole continues to grow, a corner
instability develops [17], yielding behavior with striking resemblance to
experimental observations [5,17]. To reduce the size of the simulation
domain, only one quadrant of the film was simulated, and mirror
boundary conditions were used. This simulation was conducted using

the same ?(ﬁ) as the simulation in Fig. 10, with mirror boundary
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Fig. 11. An initially circular hole in a simulated Ni film. The hole first grows to reach its kinetic Wulff shape before developing the corner instability. The corners
eventually begin to exhibit dendrite-like morphology. Coloration shows variation in height.

conditions used on the right side of the wire. The film-substrate inter-
facial energy was set to 0.6 J/m?, to roughly correspond to the partially
non-wetting behavior seen in past studies of Ni (100) films on MgO.

5. Future work

The code developed for this work, available as a complete example
simulation on Github, was designed with a high degree of modularity,
with an eye toward future improvements to physical accuracy and
performance. As with any simulation method, the degree to which this
technique reproduces physical reality is limited by the accuracy of the
materials properties used as input. We chose to base our definition of

?(ﬁ) around DFT-derived surface energy values because such values are
useful proxies for the underlying structure of the material and are
readily available for a wide-variety of materials at http://crystalium.
materialsvirtuallab.org/ [62]. While these relatively simplistic models
were evidently sufficient to yield simulation results that recover
experimental observations, they are far from perfect. They do not, for
example, take into account changes in surface free energy with tem-
perature. More realistic models of surface energy anisotropy, across a
range of temperatures, can be calculated using molecular dynamics
[701, and such values could be directly plugged into the modeling

method presented here, since any arbitrary ?(ﬁ) can be represented as a
lookup table. Such an approach could allow an investigation into how
changes in temperature, including thermal roughening of high-energy
facets, impact dewetting behavior. From a performance standpoint,
this code has been optimized to the point where its calls to the
scikit-fmm package are now the rate limiting steps. We think it should be
possible to write a new implementation of the velocity extension algo-
rithm which allows multiple quantities (in this case, x, and vy) to be
extended without repeating redundant fast marching computations. We
anticipate that this could yield a roughly 3x boost in performance,
perhaps more if the implementation is also written in Julia to eliminate
the overhead of calls to Python-wrapped C-code. Another area of future
work could be to use an adaptive simulation grid which locally increases
the resolution of the simulation in regions of high curvature. We also
believe there are likely better ways to suppress the formation of
non-physical sawtooth surfaces than penalizing V2¢(x), as we did here.
Still, as demonstrated, this code already has sufficient performance and
accuracy to probe many physical phenomena of interest in reasonable
amounts of time.

6. Conclusions

The ?(ﬁ) level-set method of simulating morphological evolution

10

proposed and demonstrated above is capable of reproducing experi-
mental results with a high degree of fidelity. This method is capable of
handling surface energy functions with hard anisotropy in conjunction
with anisotropic surface self-diffusivity. Critically, this method over-
comes the numerical stability and volume conservation issues which are

common in level-set simulations of high-order PDEs. The method uses V-

?(ﬁ) to compute the weighted mean curvature which combines surface
tension with geometry to produce the position-dependent surface-po-
tential. The normal velocity V(X ,t) is computed from the surface
Laplacian of weighted mean curvature. Incorporation of redistancing
and velocity extension algorithms produces enhanced numerical sta-
bility and allows our method to achieve volume conservation within a
few percent while maintaining the benefits of the level-set method, such
as natural handling of topological changes. We have shown that our
method matches known behavior for the isotropic Rayleigh instability
and edge retraction. In addition, it matches behavior observed in ex-
periments in which anisotropy plays a central role, including the
orientational dependence of valley formation ahead of retracting edges
and the development of faceted holes that undergo a corner instability.
Our software for simulating morphological evolution caused by aniso-
tropic surface diffusion is available on Github. This software will enable
new research on solid-state dewetting, including advances in under-
standing that will aid in the use of solid state dewetting to obtain specific
morphologies useful in micro- and nano-scale devices.
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Appendices
A. Numerical details

In broad strokes, we integrate our governing equation forward in time by first taking the required spatial derivatives of ¢ using narrow-banded
second-order central differences. From these derivatives, the normal vector of the surface is computed within a narrow band around the surface,
and this normal vector is used to compute the weighted mean curvature, as detailed in the Methods section. This weighted mean curvature is extended
away from the surface using fast-marching methods and is subsequently used to calculate the surface velocity, according to the Mullins equation, again
using second-order central differences for all spatial derivatives. This velocity is also extended away from the surface using fast-marching methods,
and the size of the time step to use is computed, as detailed in the Methods section, taking into account the maximum surface velocity. The governing
equation is then integrated one time step forward using the calculated velocity and step size. These steps are repeated in a loop, with redistancing
occurring either after every time step for 3D simulations, or periodically for 2D simulations. As mentioned in the main text, a simple 3D example is
available on Github.

B. Computational performance

Our implementation of this simulation method was written in the Julia programming language [64] which enables high performance code that is
easy to write and read. The most computationally intensive parts of our code have been parallelized, and for the size of simulations demonstrated here,
overall performance saturates when 3 threads are used in 2D and 6 threads are used in 3D. This is because the fast-marching package we use,
scikit-fmm, is single-threaded and calls to its fast marching and velocity extension functions become rate limiting for the simulation. We have
mitigated this issue through the use of scikit-fmm’s ability to only update points in a narrow band around the ¢= 0 level-set. We run our code on a
workstation computer with a 2019-era AMD Threadripper CPU. The 2D simulations shown here take tens of hours to complete while the 3D simu-
lations can take several days. Code that runs faster would allow for higher resolution simulations within reasonable times. The resolution of the
simulation limits the size of facets that can be resolved, and simulations with resolution that is too low suffer from poor volume conservation and
missing details. Potential approaches for improving computational performance are discussed in the Future Work section of the main text.
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