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A B S T R A C T

Accurately modeling solid-state dewetting in materials with strong crystalline anisotropy is an open problem in 
materials science with importance for both the manufacturing and reliability of nano-scale devices. In this work, 
we propose and demonstrate a level-set method framework for simulating solid-state dewetting which is capable 
of modeling systems with strongly anisotropic surface energies and diffusivities. Surface energy anisotropy is 
handled through the use of the Cahn-Hoffman vector construction, and surface self-diffusivity anisotropy is 
handled through the use of a diffusivity tensor. We benchmark our method against isotropic phenomena with 
analytical descriptions and go on to demonstrate that our method is capable of reproducing a host of experi
mentally observed behaviors in strongly anisotropic single-crystal materials.

1. Introduction

Experimental observations reveal that many thin films attached to 
substrates such as metals on oxidized silicon, single crystal Si on SiO2, 
and Ni on MgO or Sapphire, structures [1–6] are unstable with respect to 
islands of the thin film material. In general, the evolution of such sys
tems toward stable configurations could be mediated by 
evaporation-condensation, volume diffusion, or surface self-diffusion 
[7]. However, experimental results in systems like those mentioned 
above often show that mass transport is dominated by surface 
self-diffusion [1–6,8–10]. Experiments also provide compelling evi
dence that crystalline anisotropy strongly influences this evolution [2–6,
8–12].

For large area films and other far from equilibrium features 
patterned from these films, this morphological evolution can be highly 
driven and give rise to various instabilities, including Rayleigh-like in
stabilities [13], a fingering instability [14,15], and a corner instability 
[9,16,17]. Accurately modeling the full continuum of dewetting be
haviors, especially in systems with strong anisotropy, is an open problem 
in materials science.

If surface tension and surface diffusivity were isotropic, morpho
logical evolution would be governed by the Mullins equation, which 
states that the velocity of evolving surfaces along their normal direction 
is proportional to the surface Laplacian of curvature [18]. As with other 
4th order partial differential equations, traditional numerical methods 

for solving the Mullins equation require very small time steps to prevent 
numerical instability [19]. For crystalline films, anisotropy necessitates 
a reformulation of the Mullin’s equation. In addition to facets, corners, 
and edges being non-differentiable, the chemical potential is not directly 
related to the geometric mean curvature [20]. Furthermore, anisotropic 
surface diffusivities require that the scalar surface diffusivity be replaced 
with a surface diffusivity tensor. Experimental observations of dewetting 
wires and films also show behaviors which include topological changes 
that are troublesome for Lagrangian front-tracking numerical methods.

A deeper understanding of the effects of crystalline anisotropy on 
solid state dewetting is important because of both the striking behaviors 
to which it gives rise and the impact these behaviors have on the use of 
dewetting to create intermediate structures for use in fabricating devices 
[8–10]. In anisotropic systems, retracting rims develop faceted profiles 
(see Fig. 1) [21], and small deviations in the alignment of patterned 
features relative to a film’s crystalline axes can yield profoundly 
different behavior [13,15,22]. While this rich and complex behavior is 
of interest to both experimentalists and modelers, improved numerical 
methods are required to predict and understand these phenomena.

To this end, we present a level-set numerical approach for simulating 
the morphological evolution of anisotropic materials undergoing dew
etting and surface diffusion mediated evolution driven by capillarity 
more generally. The method includes the effects of anisotropic surface 
energy and an anisotropic surface diffusion coefficient tensor. Our 
method reproduces experimental observations, including faceting and 
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topological transitions. We have also tested our method in the absence of 
anisotropy and show that we can reproduce previous analytical, nu
merical, and computational results. Example simulations using this code 
are openly available on Github [71].

2. Background

For isotropic systems, there are many examples of modeling behavior 
governed by the Mullins equation. Mullins’ equation was initially 
applied to grain boundary grooving [18] and the evolution of surfaces of 
revolution [23,24], including Rayleigh instabilities [25], which have 
since been modeled in more complex systems such as materials in con
tact with a substrate [26] and materials constituting an intragranular 
phase [27]. Brandon and Bradshaw [1] conducted early work on 
solid-state dewetting, in which they developed a simple analytical model 
in which a straight dewetting edge’s retraction distance scales with t2/5. 
Computational [21,28,29] and experimental [12,14] work reproduced 
approximate t2/5 scaling at sufficiently long times. Nichols later showed 
that finite cylinders are also prone to ovulation [30]—the repeated 
pinching off and spheroidization of a cylinder’s ends—in addition to the 
Rayleigh instability. Smereka developed a level-set method to model 
evolution mediated by surface self-diffusion in isotropic systems, but did 
not model interactions with substrates [19]. Jiang et al. also conducted 
phase-field simulations of several isotropic solid-state dewetting phe
nomena [31].

Other approaches that go beyond the direct application of the Mul
lins equation are needed for anisotropic surface energies. The “crystal
line method” enables modeling evolution through the movement, 
creation, and annihilation of facets in fully-faceted systems [32–34]. 
This method has been used to study edge retraction in fully faceted 
systems, including the effects of assigning different diffusivities to 
different facets [21]. Dornel et al. constructed an anisotropic extension 
to the method in Ref. [28] and explored edge retraction behavior in Si 
films [35]. Burger et al. utilized anisotropy in level-set method simula
tions [36]. Jiang et al. simulated anisotropic dewetting using a 
finite-element method [37,38] and Pierre-Louise et al. used a Kinetic 

Monte Carlo (KMC) method to simulate dewetting [39–41]. Kim and 
Thompson used KMC to study the orientational dependence of 
single-crystal nanowire stability [13]. The ξ

→
(n̂)-construction (described 

below) was used in reference [36], which took a variational level-set 
approach to modeling both mean curvature flow and surface diffusion 
(though not dewetting, as there was no substrate in their systems) and in 
[37,38], which use finite-element methods to model anisotropic dew
etting. Both methods demonstrated simulations with regularized hard 
surface energy anisotropy, though neither placed emphasis on using γ(n̂)
derived from real physical systems. However references [37,38] provide 
many examples using technologically relevant geometries, including 
long wires and edges. Wang and Karma [42] studied the stability of 
faceted crystalline wires using the Phase Field (PF) method, showing 
that such wires can be susceptible to a finite-amplitude, nonlinear 
instability. All the methods described above have specific strengths and 
drawbacks and are each best-suited to particular classes of problems. In 
general, the crystalline method works well for modeling the behavior of 
fully-faceted systems, but is unable to model systems which contain any 
rounded edges or corners. Finite element methods work well for a large 
set of geometries and material properties but can’t easily capture to
pological changes such as hole formation or wire fragmentation without 
addressing them on a case-by-case basis. KMC naturally handles all to
pology changes, and geometric features emerge from the arrangement of 
the atoms in the simulation. However, KMC is quite computationally 
intensive, and it can be difficult to map macroscopic material properties, 
such as surface energy and diffusivity, into the atomistic KMC model. PF 
simulations share many of the same strengths as those employing LSM, 
including implicit handling of topological changes and the ability to use 
macroscopic material properties in the model. PF models can also make 
use of Lagrange multipliers to enforce volume conservation [42], while 
more elaborate approaches have been required to achieve strict volume 
conservation in LSM simulations [43–45]. However, PF models make 
use of a diffuse interface which makes it more difficult to model sharp 
edges and corners, in comparison to LSM models. As detailed below, we 
were able to employ numerical techniques in our LSM simulations to 
significantly, though not completely, mitigate traditional volume 

Fig. 1. Schematic illustration of retraction of a film edge in isotropic and strongly anisotropic films. Material dewetted from the substrate accumulates in a rim that 
propagates into the film. A) The as-patterned film. B) Intermediate dewetting morphology for an isotropic system. C) The same intermediate morphology for a simple 
anisotropic system. D) An isotropic system which has dewetted to and through the point of pinch-off. In isotropic systems, a valley always forms behind the rim while 
the extent of valley formation in anisotropic systems is determined by material properties. This will be discussed at greater length later in the text.
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conservation issues with LSM while retaining the ability to model sharp 
interfaces, making LSM a compelling choice for modeling solid-state 
dewetting.

In the absence of other potentials, surface self-diffusion is driven by 
gradients in weighted mean curvature (κγ), and the Mullins equation 

becomes vn = ∇s⋅
(

D(n̂) νΩ2

kBT∇sκγ

)

, where D(n̂) = RT(n̂)D(n̂)naturalR(n̂)

for Dnatural of the form 
d1 0 0
0 d2 0
0 0 0 

for an orthonormal basis v̂1, v̂2, n̂ and 

an appropriate change of basis matrix R(n̂). In practice, we lump all the 
materials properties together and use an equation of the form vn =

∇s⋅
(
B(n̂)∇sκγ

)
, where B(n̂) incorporates anisotropic diffusivity. Taylor 

[20] defines κγ as “the rate of decrease of surface free energy with 
respect to volume swept out by the motion of the surface.” There are 
several mathematically equivalent formulations of κγ, of which Taylor 
[20] gives an exhaustive review, but the formulation of κγ used 
throughout this work is the divergence of the Cahn-Hoffman vector 
ξ
→
(n̂), [46]. For an isotropic system, κγ = κ = ∇⋅ ξ

→
(n̂) = γ∇⋅n̂. The 

Cahn-Hoffman vector, commonly denoted as ξ
→
(n̂), is the gradient of the 

homogeneous extension of the surface energy function Γ(An̂) = Aγ(n̂). 
Fig. 2 walks through this construction graphically. The vector compo
nents of ξ

→
(n̂), {ξx, ξy, ξz}, are derivatives of a surface’s free energy 

relative to changes of its area and orientation. These vector components 
are analogous to the chemical potentials of compounds in solution, 
which are derivatives of a solution’s total free energy with respect to 
changes in the composition. This analogy is explored in detail in refer
ence [47]. For a given γ(n̂), the curve ξ

→
(n̂) plotted for all surface ori

entations n̂, contains the Wulff shape with the addition of “ears” or 

“swallowtails” for the unstable orientations, if there are any (i.e., the 
case of sharp edges on the Wulff shape), see Fig. 2(F). These ears are the 
orientation-space analog of a miscibility gap in alloys [47].

In simulations of systems with such unstable orientations, we use a 

Willmore regularization term [48] − ε2
(

κss +
1
2κ3

)

. This regularization 

appears to have first been proposed in this context in Ref. [49] and is 
used in many studies of anisotropic surface evolution including Refs. 
[36–38]. Refs [38,50] provide particularly clear explanations of this 
regularization. The regularization is the analog to the square-gradient 
term in diffuse-interface theories (e.g., Cahn-Hilliard [51] and 
Allen-Cahn [52] functionals). Without regularization, surfaces with 
unstable orientations would develop facets or pyramids of arbitrar
y—and possibly infinitesimal—length scale (i.e., varifolds [53]). We 
find that the magnitude of the regularization coefficient sets the length 
scale of the faceting instability in our simulations, as expected. In many 
of our simulations, we construct the convex portion of ξ

→
(n̂) from an 

observed Wulff shape, and we find that the exact functional form of the 
non-convex parts of ξ

→
(n̂) (i.e., the “ears”) plays a very negligible role in 

the results.
Our simulations are based on the level-set method, an Eulerian 

approach for simulating the evolution of surfaces, developed by Osher 
and Sethian [54]. In the level-set method, the surface being simulated is 
the zero isocontour, or level-set, of a function ϕ( x→) (usually chosen to be 
a signed distance function). Numerically, surface evolution is imple
mented by incrementally updating ϕ( x→) by computing ∂ϕ

∂t + v→⋅∇ϕ = 0 
for small time-steps (see Fig. 3). Level set methods are useful for 
studying morphological evolution, particularly when topological 
changes occur, as the implicit representation of the evolving surface 
naturally handles such changes without special treatment. Another 

Fig. 2. The ξ-vector construction. From left to right, top to bottom: A) The surface energy function γ(n̂) shown as a polar plot. B) An alternative representation as a 
scalar function on the unit circle. C) An extension of the scalar function over all space such that γ(An̂) = Aγ(n̂), D) Aγ(n̂) isocontours clarify where γ is changing most 
rapidly. E) White arrows indicate ξ

→
( n→) for n̂ of magnitude 1, where ξ

→
( n→) is the gradient of Aγ(n̂). F) A plot of just ξ

→
(n̂) from the origin, which yields the traditional 

ξ-vector construction. The convex portion of the black curve in F) is gives the equilibrium shape.
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benefit is that geometric quantities, such as the normal vector and 
curvature, are naturally defined in terms of derivatives of ϕ( x→). Naïve 
implementations of LSM are plagued by issues of stability and volume 
conservation arising from distortions to ϕ( x→), which cause it to locally 
deviate from a signed distance function. Redistancing methods, which 
are used in our simulations and discussed in detail below, combat this 
problem by approximately restoring ϕ( x→) to a signed distance function 
without moving the zero level-set. A complimentary approach described 
by Zhao et al. [55] and first implemented by Smereka [19] removes the 
distortionary components of calculated quantities, by solving ∂g

∂t +

sign(ϕ) ∇ϕ
|∇ϕ|⋅∇g, where g can be any calculated quantity such as interface 

velocity or κγ.

3. Methods

For an LSM simulation of surface self-diffusion driven by the gradient 
of weighted mean curvature, the governing equation for the time- 
evolution of ϕ( x→, t) is 

∂ϕ
∂t

= −
(
∇s⋅

(
B(n̂)∇sκγ

))
∇ϕ . (1) 

As discussed above, B(n̂) incorporates the effect of anisotropic 
diffusivity, while κγ incorporates the effect of anisotropic surface energy. 
This equation is numerically integrated forward in time using finite 
differences. Conceptually, in fact, LSM simulations do nothing more 

than integrate this governing equation forward in time. However, in 
practice, numerically integrating this equation forward in time without 
performing additional operations, discussed below, quickly leads to 
numerical instabilities and poor volume conservation caused by 
unphysical distortions to ϕ( x→). These distortions arise from erroneous 
values for physical quantities calculated away from the interface. For 
example, only the calculated values of κγ on the ϕ( x→) = 0 level-set have 
physical meaning, and the ϕ( x→) = 5 level-set will tend to have much 
different values of κγ. If the differing values of κγ on other level-sets, ϕ( x→,

t) ∕= 0, are not corrected, these level-sets won’t move in sync with the 
zero-level-set, and ϕ( x→, t) will become distorted, negatively impacting 
the accuracy of the simulation. We utilize the correction method 
developed by Smereka[19] and Zhao et al. [55]. This approach replaces 
non-interfacial values of both κγ and surface velocity with values ob
tained by extending the physically meaningful interfacial values out into 
a band of points encapsulating the interface. Smereka proposes a specific 
algorithm for performing this extension, but in our testing, we obtained 
better results using Adalsteinsson and Sethian’s extension algorithm 
[56] based on the Fast Marching Method (FMM) [57]. In all of the work 
presented here, we used the implementation of Adalsteinsson and 
Sethian’s algorithm found in the scikit-fmm Python package [58]. While 
these extension steps reduce unphysical distortions to ϕ( x→), we also 
periodically redistanced ϕ( x→) to reset it to a signed distance function. In 
our testing, we found that Sussman’s redistancing method [59] usually 
yields the best results, as opposed to fast marching based redistancing, 
and the results presented here are all from simulations making use of 

Fig. 3. The level-set method implicitly encodes the location of interfaces (indicated by the blue outlines) in the values of a signed distance function, ϕ( x→, t). The 

magnitude of ϕ gives the distance from x→ to the closest interfacial point and the sign indicates whether (x
→
, t) is inside (ϕ( x→, t) < 0) or outside (ϕ( x→, t) > 0) an 

interface. Here, two neighboring circles grow and merge (right, bottom to top). The evolution of ϕ is shown in the center of the figure, with the time axis oriented 
vertically. Three Individual time steps are highlighted for clarity.
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Sussman’s method.
Numerically, we combine second order spatial derivatives with first 

order time stepping. Unfortunately, the central difference stencils used 
to compute ∇ϕ( x→), and thus n̂( x→), yield the same normal vector for a 
flat surface and for a sawtooth surface with the same average orienta
tion. During development, this led to non-physical oscillations devel
oping on thermodynamically stable surfaces in some strongly 
anisotropic simulations. To combat this, we add a small term that goes as 
∇2ϕ( x→) to κγ, calculated using second-order central differences. This 
term is similar to the curvature of the surface, so setting it too large will 
cause non-physical smoothing in anisotropic systems. We still found this 
smoothing operator to yield superior results to that used in Ref. [19], 
which is non-local in nature and thus introduced clearly non-physical 
distortions in our testing; Ref. [19] acknowledges the problems posed 
by these distortions. To increase computational performance, the size of 
the time step taken for each iteration is adaptively determined by Δt =
αΔx/|S|max, where Δx is the grid spacing, |S|max is the maximum of the 
absolute value of the interface velocity, and α is a scaling factor less than 
1. In practice, good results are often obtained with α ≈ 0.01. In 3D 
simulations, we found the performance cost of redistancing after every 
iteration was outweighed by the larger α it allowed us to use, while in 
two dimensions, such frequent redistancing was not always necessary. 
We found that α having too large a value led to volume drifting upward 
while setting it too small led to downward volume drift. Therefore, in 
most simulations, we adjust α after each time step by a very small 
amount, negatively proportional to the preceding time step’s change in 
volume as a percentage of the initial volume. We find that α tends to 
trend downward during periods of topological change, such as pinch-off 
or ovulation, and then rebound when evolution is less extreme. If α 
climbs to too high a value, the simulation can become unstable, and if it 
becomes too low, the simulation takes too long to run, so we also set 
upper and lower bounds on α. In simulations in which α was made 
adaptive in this way, changes in volume over the course of the simula
tion were often less than a percent, and no simulations presented here 
had volume changes greater than a few percent. In comparison to 
techniques that strictly enforce global volume conservation [42,43,60], 
our method for mitigating volume loss doesn’t introduce non-diffusive 
mass transport, a criterion we prioritized over perfect global volume 
conservation. In fact, the authors of [42] note that their volume con
servation constraint, “is used to avoid slow surface diffusion dynamics,” 
which is beneficial for a stability analysis but would present problems 
for our application. For all volume measurements in this paper, we 
follow Sussman’s use of a smoothed Heavyside function [59] to define 
the volume of a body characterized by a signed distance function. For 
more details on numerical implementation, see the appendix.

As discussed above, surface energy anisotropy is incorporated into 
the simulations through the Cahn-Hoffman vector ξ

→
(n̂). For crystalline 

systems, calculating ξ
→
(n̂) can be computationally expensive, so values 

of ξ
→
(n̂) for such systems were precomputed and accessed via a lookup 

table. For 3D simulations, these lookup tables were generated using the 
method proposed in Smith et al. [61]. In 2D, we found that lookup tables 
with 103 to 105 points were sufficiently dense while in 3D, we used 
lookup tables with up to about 3 × 106 points for materials for which 
very small facets needed to be resolved. In 2D simulations, ξ

→
(n̂) could 

also be interpolated between lookup values by fitting a spline to the 
whole lookup table. For simulations which sought to match the behavior 
of a specific material, an initial γ(n̂) was created using DFT-calculated 
surface energies from Tran, et al. [62]. Non-equilibrium orientations 
could be treated in a variety of ways to tune the hardness of the 
anisotropy. In each case, the final γ(n̂) was then extended and numeri
cally differentiated to yield ξ

→
(n̂), as detailed in the background section. 

In other cases, arbitrary functional forms of ξ
→
(n̂) were created to 

explore how surface energy anisotropy affects dewetting-like processes 
more generally. For example, we conducted early simulations in a 

fictional simple cubic system with very high surface energy for all but 
{100} surfaces (i.e., the Wulff shape was a cube). For simulations of true 
dewetting (i.e. simulations in which the evolving material is in contact 
with a substrate), we initialize the simulation such that the zero level-set 
of ϕ( x→) intersects the bounding box of the simulation domain along the 
x = xmax plane. This means that the contact patch between the film and 
the substrate is implicitly represented by the triple-line. An additional 
plane of ghost values is maintained below the physically meaningful 
simulation domain, which helps to more accurately maintain the 
zero-flux boundary condition at the substrate. In the vicinity of the 
triple-line, these ghost values are set such that ϕ

(
y = ymax + 1

)
= ϕ

(
y =

ymax
)
+

∂ϕ
∂y|y=ymax

. This approach is similar to that used in Ref. [63] but is 
distinct in that we do not force the system to have a specific contact 
angle. To correctly model the evolution of the triple-line, we set 

κγ = ∇⋅ ξ
→
(n̂) +

(
ĉγ

Γ ⋅n̂Γ +γFS − γVS
) ̅̅̅̅̅̅̅̅̅̅

n2
x+n2

z

√

Δx
̅̅̅̅̅̅̅̅
1+n2

y
√ for points in the y =

ymax-plane in the vicinity of the triple-line, where ĉγ
Γ =

(
ξ
→
(n̂)⋅n̂

)
ĉΓ −

(
ξ
→
(n̂)⋅ĉΓ

)
n̂, n̂Γ is the in-plane normal vector of the triple-line, and ̂cΓ is 

the unit vector defined to be tangent to the evolving surface and 
orthogonal to the triple-line while being oriented such that it points 

toward the substrate. This is similar to Ref. [37] which derives that ĉγ
Γ ⋅ 

n̂Γ + γFS − γVS is the first variation of total free energy of the system with 
respect to displacement of the triple-line. In our level-set formulation, 
however, the triple-line is represented implicitly, so we incorporate this 
quantity into κγ, rather than treating the evolution of the triple-line 

separately, as is done in Ref. [37]. The geometric factor 
̅̅̅̅̅̅̅̅̅̅
n2

x+n2
z

√

Δx
̅̅̅̅̅̅̅̅
1+n2

y
√ re

lates the variation of the triple-line to the variation of the surface 
element directly above the triple-line. We apply zero-flux boundary 
conditions at the triple-line and, in 3D simulations, also prohibit flux 
along the triple-line.

4. Results

4.1. Isotropic systems

To benchmark our technique, we simulated edge retraction and the 
Rayleigh instability in isotropic systems and compared our results to 
theoretical and previous simulations. For the retraction of an isotropic, 
semi-infinite film, the retracting rim should develop a smooth profile 
composed of a “rim” containing most of the dewetted material followed 
by oscillations in film height of decaying amplitude; the first minimum is 
often referred to as the valley [28,35] (Fig. 3). Eventually this valley 
touches down to contact the substrate, separating the rim from the rest 
of the film in a behavior called pinch-off. Starting with an edge like the 
one shown in Fig. 1(A), the edge retraction distance initially increases 
rapidly but then is expected to evolve to approximately scale as t2/5 [28,
29]. This behavior in isotropic systems, as well as the effect of contact 
angle, is explored in depth in [28] and our simulation results match 
theirs (Figs. 4 and 5). We also report scaling relations for the valley 
depth and rim height which were not explicitly discussed in Refs. [28,
35].

As a second test, we simulated Rayleigh-like instabilities [25] on 
free-standing cylinders with isotropic surface energy evolving by surface 
diffusion. Perturbations with wavelengths greater than the circumfer
ence of the wire will grow, eventually breaking the cylinder into spheres 
[24]. Our simulation technique reproduced the correct behavior with 
small wavelength (λ < 2πR0) perturbations on infinite cylinders 
(modeled as finite segments with periodic boundary conditions) 
decaying to zero amplitude and perturbations with supercritical wave
lengths (λ > 2πR0) growing and breaking up the wire, see Fig. 6(A) and 6 
(B). Perturbations close to λ = 2

̅̅̅
2

√
πR0 grew the fastest, in correspon

dence to theory [24]. In Fig. 6(C), a long, finite wire was given an 
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unstable perturbation. The ends of the wire began to retract and pinch 
off in the ovulatory manner predicted by Nichols and Mullins [23], but 
the middle of the wire still decomposed in a Rayleigh-like fashion.

As another demonstration of our technique, we simulated the growth 
of holes in isotropic films (Fig. 7). As expected, these holes maintained 
their initially circular shape and developed a rim with a valley behind it, 
as in [64]. This behavior will be contrasted with that of anisotropic films 
in the next section.

4.2. Effects of anisotropy

We applied our algorithm to anisotropic systems with facets, starting 
with simulations of single-crystal Ni, for which there is a large body of 
experimental data. Such films can be lithographically patterned with 
extremely long, straight edges such that in some cases these experiments 
can be modeled in two spatial dimensions (e.g., ignoring the dimension 
that runs along the edge of the film). Of particular interest is the 
experimental observation that for single-crystal Ni films on MgO, the 
edge orientations that retract most slowly are those for which the rim is 
bound by equilibrium facets along their length. These orientations are 
termed kinetically stable, because edges of other orientations will 
eventually facet to become composed of such edges [12]. In Ni (100) 
films on MgO, retracting edges with kinetically stable orientations do 
not exhibit the formation of a valley [5], while retracting edges with 
kinetically stable orientations in (110) Ni films do exhibit valley for
mation and pinch-off [65]. This disparity exists despite both systems 
having equilibrium, low-index top facets, a criterion which past simu
lation work suggests should be sufficient to suppress valley formation 
[21]. To determine if our simulation technique captures the physical 
behavior of this system, we first created a surface energy function based 
on DFT-calculated values of the surface energy for Ni [62]. For 
low-index orientations, this function returned the DFT-calculated value 
and returned a linear combination of these energies for intermediate 
orientations, ignoring additional energy terms for corners and edges. 
The cusps corresponding to equilibrium orientations were very slightly 
rounded to prevent ξ

→
(n̂) from being ill-defined at these orientations, 

similar to the smoothing proposed in Bonzel and Preuss [66]. The sur
face energy of the (110) facet was also reduced by less than 1%, from 

2.29 J/m2 to 2.28 J/m2 (though these quantities are effectively 
non-dimensional, as units are not used internally in the simulation), to 
ensure that this very small facet wasn’t washed out by the rounding of 
the cusps. Viewed along the appropriate cross-section, this anisotropy 
function is shown in Fig. 8, which shows that despite the absence of an 
evident (011) cusp in γ( n→), ξ

→
(n̂) still has an obvious facet. The ability of 

our simulation method to accommodate more complex surface anisot
ropy such as this is one of its core strengths. Following the lead of Jiang 
et al. [67], we introduced a Willmore regularization term [48], −

ε2
(

κss +
1
2κ3

)

, to our chemical potential to give the faceting instability 

finite wavelength, as discussed above. In this case, ε was simply set to 1.
We then used this γ(n̂) to conduct 2D edge-retraction simulations of 

free-standing films to isolate the effects of surface energy and diffusivity 
from any confounding effects of triple-line dynamics. Fig. 9 shows the 
results of several such simulations, with the wires cut along their long 
axis of symmetry for visual clarity. To test our algorithm for anisotropic 
diffusivity, we assigned a diffusivity value to each facet. For non- 
equilibrium orientations, we treated the surface as being micro- 
faceted and found the diffusivity through a weighted inverse sum, 
analogous to adding conductance in series. As in experiments, valley 
formation occurs in the simulations of (110) films and not in those of 
(100) films, even when diffusivity is isotropic. However, by manipu
lating the diffusivity across the (110) facet, we found that it is a key 
parameter for controlling the relative size of the valley that forms in 
(110) films. When the diffusivity across this facet is large, a deep, faceted 
valley develops. When this diffusivity is low, valley formation is sup
pressed. Fig. 9(A) and (B) contrast these two scenarios. Experimentally, 
valley formation is not observed in Ni (100) films [12], and it is also 
absent in our simulations. We attribute this to the much deeper cusp in 
γ(n̂) associated with the (100) facets, in comparison with the (110) 
facets. Fig. 9(A) and (9 D) demonstrate that the experimentally observed 
behavior [12,65,68] of both (110) and (100) films can be accurately 
simulated using a single set of surface energy and diffusivity functions.

In three dimensions, experiments and simulations show that the 
range of phenomenology to explore is even richer, and the impact of 
anisotropy is even more profound. The simulation of a free-standing 
wire with strong anisotropy, shown in Fig. 10, demonstrates that the 

Fig. 4. Rim profile for an isotropic film with 120◦ contact angle as it evolves toward and through pinch-off. A) The original as-patterned edge of the film. B) 
Development of a rim and valley. C) At the point of pinch-off when the valley touches the substrate. This closely matches the corresponding figure 4 c) in Wong et al. 
[28]. Their simulations used a point-tracking method with adaptive resolution and dimensionless units such that their film had an initial thickness of 1. The 
simulation shown in this figure was run with resolution such that the initial film thickness was 3.5. For comparison to [28], the spatial dimensions in this figure have 
been divided by 3.5 and the time values have been divided by 3.54 (following the same non-dimensionalization of [28]). D) After pinch-off, a wire has formed and the 
new edge has developed a rim.
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Fig. 5. Selected scaling relations for an isotropic edge retraction simulation with 90◦ equilibrium contact angle (Units scaled to match [28]). Data are plotted from 
the beginning of the simulation until just before the first pinch-off event. Log-log plots are included to show how the behavior asymptotically approaches power law 
scaling. The annotated least-squares-fit slope on the log-log plots corresponds to the regions highlighted in red.

M.A. L’Etoile et al.                                                                                                                                                                                                                             Acta Materialia 282 (2025) 120368 

7 



presence of low-energy orientations along the length of the wire can 
suppress the Rayleigh instability and promote ovulation. Reference [62] 
explores this phenomenology in detail and demonstrates strong 

agreement between experiment and simulations using this technique. 
Reference [69] also demonstrates that strong anisotropy can suppress 
both the Rayleigh instability and ovulation in wires with special, 

Fig. 6. Recreating the isotropic Rayleigh-like instability. A) An infinite wire with an initial perturbation of large amplitude but subcritical wavelength which decays. 
B) An infinite wire with an initial perturbation of the same amplitude but supercritical wavelength. This wire breaks up into spherical particles through the Rayleigh- 
like instability. C) A long finite wire with a perturbation of super-critical wavelength. The ends of the wire retract while the body of the wire undergoes the Rayleigh- 
like instability. Initial wire diameter was set to 100 nm with D Ω

kBT = 6.2–21 m5/J s.

Fig. 7. An initially circular hole in an isotropic film with γFS − γVS = 0.6 and γFV = 1. Coloration shows variation in height.

Fig. 8. A) The full surface energy function γ(n̂) derived from DFT values and B) the cross-section of this function used to simulate Ni edge retraction. The insets to the 
right close-up plots of γ(n̂) and ξ

→
(n̂) in the vicinity of the (011) facet. Values are in units of J/m2.
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high-stability orientations. In the simulation shown in Fig. 10, ξ
→
(n̂) was 

again based on the same DFT values as above, although only the three 
lowest energy families of facets—(001), (011), and (111)—were used 
and they were configured to have small spinodes at all corners and 
edges.

Another example of this simulation technique recovering complex, 
anisotropic behavior is shown in Fig. 11. In this simulation, a film with a 
(100) top surface is initialized with a circular hole. However, this hole 

quickly grows to its kinetic Wulff shape [7,11] which in this case is 
bound by long edges with [110] in-plane normals and truncated corners 
with [100] in-plane normals. As the hole continues to grow, a corner 
instability develops [17], yielding behavior with striking resemblance to 
experimental observations [5,17]. To reduce the size of the simulation 
domain, only one quadrant of the film was simulated, and mirror 
boundary conditions were used. This simulation was conducted using 
the same ξ

→
(n̂) as the simulation in Fig. 10, with mirror boundary 

Fig. 9. 2D simulations of retracting film edges. Note very different x and y scales. Full wires were 360 units long to start and 11 units tall. As discussed in the text, the 
films in these simulations are free-standing to avoid confounding substrate effects. Only the top half of the wires is shown because the simulation is symmetric in this 
direction. A) Most closely matches experiments [12] [59],[62, Ch. 6], and D) shows that experimental behavior (suppressed valley formation) in (100) films can be 
reproduced using the same parameters as A). The upper-left corner of each subplot shows the diffusivity function used in the simulation, while the lower-left corner 
shows how the orientation of the strip corresponds to the equilibrium Wulff-shape (based on the function shown in Fig. 6 (a-c)).

Fig. 10. Long Ni wire with short wavelength perturbation. Wire is bound by (001) and (011) -type facets along its length. These facets suppress the Rayleigh-like 
instability but allow for ovulation. Initial wire diameter was set to 100 nm with D Ω

kBT = 6.2–21 m5/J s for all n̂.
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conditions used on the right side of the wire. The film-substrate inter
facial energy was set to 0.6 J/m2, to roughly correspond to the partially 
non-wetting behavior seen in past studies of Ni (100) films on MgO.

5. Future work

The code developed for this work, available as a complete example 
simulation on Github, was designed with a high degree of modularity, 
with an eye toward future improvements to physical accuracy and 
performance. As with any simulation method, the degree to which this 
technique reproduces physical reality is limited by the accuracy of the 
materials properties used as input. We chose to base our definition of 
ξ
→
(n̂) around DFT-derived surface energy values because such values are 

useful proxies for the underlying structure of the material and are 
readily available for a wide-variety of materials at http://crystalium. 
materialsvirtuallab.org/ [62]. While these relatively simplistic models 
were evidently sufficient to yield simulation results that recover 
experimental observations, they are far from perfect. They do not, for 
example, take into account changes in surface free energy with tem
perature. More realistic models of surface energy anisotropy, across a 
range of temperatures, can be calculated using molecular dynamics 
[70], and such values could be directly plugged into the modeling 
method presented here, since any arbitrary ξ

→
(n̂) can be represented as a 

lookup table. Such an approach could allow an investigation into how 
changes in temperature, including thermal roughening of high-energy 
facets, impact dewetting behavior. From a performance standpoint, 
this code has been optimized to the point where its calls to the 
scikit-fmm package are now the rate limiting steps. We think it should be 
possible to write a new implementation of the velocity extension algo
rithm which allows multiple quantities (in this case, κγ and vn) to be 
extended without repeating redundant fast marching computations. We 
anticipate that this could yield a roughly 3x boost in performance, 
perhaps more if the implementation is also written in Julia to eliminate 
the overhead of calls to Python-wrapped C-code. Another area of future 
work could be to use an adaptive simulation grid which locally increases 
the resolution of the simulation in regions of high curvature. We also 
believe there are likely better ways to suppress the formation of 
non-physical sawtooth surfaces than penalizing ∇2ϕ( x→), as we did here. 
Still, as demonstrated, this code already has sufficient performance and 
accuracy to probe many physical phenomena of interest in reasonable 
amounts of time.

6. Conclusions

The ξ
→
(n̂) level-set method of simulating morphological evolution 

proposed and demonstrated above is capable of reproducing experi
mental results with a high degree of fidelity. This method is capable of 
handling surface energy functions with hard anisotropy in conjunction 
with anisotropic surface self-diffusivity. Critically, this method over
comes the numerical stability and volume conservation issues which are 
common in level-set simulations of high-order PDEs. The method uses ∇⋅ 
ξ
→
(n̂) to compute the weighted mean curvature which combines surface 

tension with geometry to produce the position-dependent surface-po
tential. The normal velocity v→( x→, t) is computed from the surface 
Laplacian of weighted mean curvature. Incorporation of redistancing 
and velocity extension algorithms produces enhanced numerical sta
bility and allows our method to achieve volume conservation within a 
few percent while maintaining the benefits of the level-set method, such 
as natural handling of topological changes. We have shown that our 
method matches known behavior for the isotropic Rayleigh instability 
and edge retraction. In addition, it matches behavior observed in ex
periments in which anisotropy plays a central role, including the 
orientational dependence of valley formation ahead of retracting edges 
and the development of faceted holes that undergo a corner instability. 
Our software for simulating morphological evolution caused by aniso
tropic surface diffusion is available on Github. This software will enable 
new research on solid-state dewetting, including advances in under
standing that will aid in the use of solid state dewetting to obtain specific 
morphologies useful in micro- and nano-scale devices.
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Fig. 11. An initially circular hole in a simulated Ni film. The hole first grows to reach its kinetic Wulff shape before developing the corner instability. The corners 
eventually begin to exhibit dendrite-like morphology. Coloration shows variation in height.
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Appendices

A. Numerical details

In broad strokes, we integrate our governing equation forward in time by first taking the required spatial derivatives of ϕ using narrow-banded 
second-order central differences. From these derivatives, the normal vector of the surface is computed within a narrow band around the surface, 
and this normal vector is used to compute the weighted mean curvature, as detailed in the Methods section. This weighted mean curvature is extended 
away from the surface using fast-marching methods and is subsequently used to calculate the surface velocity, according to the Mullins equation, again 
using second-order central differences for all spatial derivatives. This velocity is also extended away from the surface using fast-marching methods, 
and the size of the time step to use is computed, as detailed in the Methods section, taking into account the maximum surface velocity. The governing 
equation is then integrated one time step forward using the calculated velocity and step size. These steps are repeated in a loop, with redistancing 
occurring either after every time step for 3D simulations, or periodically for 2D simulations. As mentioned in the main text, a simple 3D example is 
available on Github.

B. Computational performance

Our implementation of this simulation method was written in the Julia programming language [64] which enables high performance code that is 
easy to write and read. The most computationally intensive parts of our code have been parallelized, and for the size of simulations demonstrated here, 
overall performance saturates when 3 threads are used in 2D and 6 threads are used in 3D. This is because the fast-marching package we use, 
scikit-fmm, is single-threaded and calls to its fast marching and velocity extension functions become rate limiting for the simulation. We have 
mitigated this issue through the use of scikit-fmm’s ability to only update points in a narrow band around the ϕ= 0 level-set. We run our code on a 
workstation computer with a 2019-era AMD Threadripper CPU. The 2D simulations shown here take tens of hours to complete while the 3D simu
lations can take several days. Code that runs faster would allow for higher resolution simulations within reasonable times. The resolution of the 
simulation limits the size of facets that can be resolved, and simulations with resolution that is too low suffer from poor volume conservation and 
missing details. Potential approaches for improving computational performance are discussed in the Future Work section of the main text.

References

[1] R. Brandon, F.J. Bradshaw, The mobility of the surface atoms of copper and silver 
evaporated deposits. Royal Aircraft Establishment Farnborough (United Kingdom), 
1966. https://apps.dtic.mil/docs/citations/AD0638210 (accessed June 11, 2021).

[2] E. Jiran, C.V. Thompson, Capillary Instabilities in Thin Films film, J. Electron. 
Mater. 19 (1990) 1153–1160.

[3] P.R. Gadkari, A.P. Warren, R.M. Todi, R.V. Petrova, K.R. Coffey, Comparison of the 
agglomeration behavior of thin metallic films on SiO2, J. Vac. Sci. Technol. Vac. 
Surf. Films 23 (2005) 1152–1161, https://doi.org/10.1116/1.1861943.

[4] R. Nuryadi, Y. Ishikawa, M. Tabe, Formation and ordering of self-assembled Si 
islands by ultrahigh vacuum annealing of ultrathin bonded silicon-on-insulator 
structure, Appl. Surf. Sci. 159–160 (2000) 121–126, https://doi.org/10.1016/ 
S0169-4332(00)00051-9.

[5] J. Ye, C.V. Thompson, Mechanisms of complex morphological evolution during 
solid-state dewetting of single-crystal nickel thin films, Appl. Phys. Lett. 97 (2010) 
071904, https://doi.org/10.1063/1.3480419.

[6] E. Rabkin, D. Amram, E. Alster, Solid state dewetting and stress relaxation in a thin 
single crystalline Ni film on sapphire, Acta Mater 74 (2014) 30–38, https://doi. 
org/10.1016/J.ACTAMAT.2014.04.020.

[7] R.W. Balluffi, S.M. Allen, W.C. Carter, Surface evolution due to capillary forces, 
Kinet. Mater. (2005). https://ui.adsabs.harvard.edu/abs/2005kima.book.....B
(accessed January 11, 2022).

[8] C.V. Thompson, Solid-state dewetting of thin films, Annu. Rev. Mater. Res. 42 
(2012) 399–434, https://doi.org/10.1146/annurev-matsci-070511-155048.

[9] E. Bussmann, F. Cheynis, F. Leroy, P. Müller, O. Pierre-Louis, Dynamics of solid 
thin-film dewetting in the silicon-on-insulator system, New J. Phys. 13 (2011) 
043017, https://doi.org/10.1088/1367-2630/13/4/043017.

[10] J. Ye, D. Zuev, S. Makarov, Dewetting mechanisms and their exploitation for the 
large-scale fabrication of advanced nanophotonic systems FULL CRITICAL REVIEW 
Dewetting mechanisms and their exploitation for the large-scale fabrication of 
advanced nanophotonic systems, (2018). https://doi.org/10.1080/09506608.201 
8.1543832.

[11] J. Ye, C.V. Thompson, Anisotropic edge retraction and hole growth during solid- 
state dewetting of single crystal nickel thin films, Acta Mater 59 (2011) 582–589, 
https://doi.org/10.1016/j.actamat.2010.09.062.

[12] G.Hyun Kim, R.V. Zucker, J. Ye, W.Craig Carter, C.V. Thompson, Quantitative 
analysis of anisotropic edge retraction by solid-state dewetting of thin single crystal 
films, J. Appl. Phys. 113 (2013) 043512, https://doi.org/10.1063/1.4788822.

[13] G.H. Kim, C.V. Thompson, Effect of surface energy anisotropy on Rayleigh-like 
solid-state dewetting and nanowire stability, Acta Mater 84 (2015) 190–201, 
https://doi.org/10.1016/J.ACTAMAT.2014.10.028.

[14] F. Leroy, F. Cheynis, T. Passanante, P. Müller, Dynamics, anisotropy, and stability 
of silicon-on-insulator dewetting fronts, Phys. Rev. B 85 (2012) 195414, https:// 
doi.org/10.1103/PhysRevB.85.195414.

[15] Y.A. Shin, C.V. Thompson, Templated fingering during solid state dewetting, Acta 
Mater 207 (2021) 116669, https://doi.org/10.1016/j.actamat.2021.116669.

[16] F. Leroy, F. Cheynis, T. Passanante, P. Müller, Influence of facets on solid state 
dewetting mechanisms: comparison between Ge and Si on ${\mathbf{SiO}}_ 

{\mathbf{2}}$, Phys. Rev. B 88 (2013) 035306 https://doi.org/10.1103/ 
PhysRevB.88.035306.

[17] R.V. Zucker, G.H. Kim, J. Ye, W.C. Carter, C.V. Thompson, The mechanism of 
corner instabilities in single-crystal thin films during dewetting, J. Appl. Phys. 119 
(2016) 125306, https://doi.org/10.1063/1.4944712.

[18] W.W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28 (1957) 333–339, 
https://doi.org/10.1063/1.1722742.

[19] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion 
motion, 2003.

[20] J.E. Taylor, II-mean curvature and weighted mean curvature, Acta Metall. Mater. 
40 (1992) 1475–1485, https://doi.org/10.1016/0956-7151(92)90091-R.

[21] R.V. Zucker, G.H. Kim, W.Craig Carter, C.V. Thompson, A model for solid-state 
dewetting of a fully-faceted thin film, Comptes Rendus Phys 14 (2013) 564–577, 
https://doi.org/10.1016/J.CRHY.2013.06.005.

[22] G.H. Kim, Study of Phenomenologies During Templated Solid-State Dewetting of 
Thin Single Crystal films, Thesis, Massachusetts Institute of Technology, 2016. http 
s://dspace.mit.edu/handle/1721.1/103184 (accessed January 11, 2022).

[23] F.A. Nichols, W.W. Mullins, Morphological changes of a surface of revolution due 
to capillarity-induced surface diffusion, J. Appl. Phys. 36 (1965) 1826–1835, 
https://doi.org/10.1063/1.1714360.

[24] F.A. Nichols, W.W. Mullins, Surface- (Interface-) and volume diffusion 
contributions to morophological changes driven by capillarity, Trans. Metall. Soc. 
AIME 233 (1965) 1840–1847.

[25] Lord Rayleigh, On the instability of jets, Proc. Lond. Math. Soc. s1-10 (1878) 4–13, 
https://doi.org/10.1112/plms/s1-10.1.4.

[26] M.S. Mccallum, P.W. Voorhees, M.J. Miksis, S.H. Davis, H. Wong, Capillary 
instabilities in solid thin films: lines, J. Appl. Phys. 79 (1996) 7604, https://doi. 
org/10.1063/1.362343.

[27] W.C. Carter, A.M. Glaeser, The morphological stability of continuous intergranular 
phases: thermodynamic considerations, Acta Metall 35 (1987) 237–245, https:// 
doi.org/10.1016/0001-6160(87)90231-8.

[28] H. Wong, P.W. Voorhees, M.J. Miksis, S.H. Davis, Periodic mass shedding of a 
retracting solid film step, Acta Mater 48 (2000) 1719–1728, https://doi.org/ 
10.1016/S1359-6454(00)00016-1.

[29] R.V. Zucker, W.C. Carter, C.V. Thompson, Power-law scaling regimes for solid-state 
dewetting of thin films, Scr. Mater. 116 (2016) 143–146, https://doi.org/10.1016/ 
j.scriptamat.2016.01.039.

[30] F.A. Nichols, On the spheroidization of rod-shaped particles of finite length, 
J. Mater. Sci. 11 (1976) 1077–1082, https://doi.org/10.1007/BF00553115.

[31] W. Jiang, W. Bao, C.V. Thompson, D.J. Srolovitz, Phase field approach for 
simulating solid-state dewetting problems, Acta Mater 60 (2012) 5578–5592, 
https://doi.org/10.1016/J.ACTAMAT.2012.07.002.

[32] A.R. Roosen, J.E. Taylor, Modeling crystal growth in a diffusion field using fully 
faceted interfaces, J. Comput. Phys. 114 (1994) 113–128, https://doi.org/ 
10.1006/jcph.1994.1153.

[33] A.R. Roosen, W.C. Carter, Simulations of microstructural evolution: anisotropic 
growth and coarsening, Phys. Stat. Mech. Its Appl. 261 (1998) 232–247, https:// 
doi.org/10.1016/S0378-4371(98)00377-X.

M.A. L’Etoile et al.                                                                                                                                                                                                                             Acta Materialia 282 (2025) 120368 

11 

https://apps.dtic.mil/docs/citations/AD0638210
http://refhub.elsevier.com/S1359-6454(24)00718-3/sbref0002
http://refhub.elsevier.com/S1359-6454(24)00718-3/sbref0002
https://doi.org/10.1116/1.1861943
https://doi.org/10.1016/S0169-4332(00)00051-9
https://doi.org/10.1016/S0169-4332(00)00051-9
https://doi.org/10.1063/1.3480419
https://doi.org/10.1016/J.ACTAMAT.2014.04.020
https://doi.org/10.1016/J.ACTAMAT.2014.04.020
https://ui.adsabs.harvard.edu/abs/2005kima.book.....B
https://doi.org/10.1146/annurev-matsci-070511-155048
https://doi.org/10.1088/1367-2630/13/4/043017
https://doi.org/10.1080/09506608.2018.1543832
https://doi.org/10.1080/09506608.2018.1543832
https://doi.org/10.1016/j.actamat.2010.09.062
https://doi.org/10.1063/1.4788822
https://doi.org/10.1016/J.ACTAMAT.2014.10.028
https://doi.org/10.1103/PhysRevB.85.195414
https://doi.org/10.1103/PhysRevB.85.195414
https://doi.org/10.1016/j.actamat.2021.116669
https://doi.org/10.1103/PhysRevB.88.035306
https://doi.org/10.1103/PhysRevB.88.035306
https://doi.org/10.1063/1.4944712
https://doi.org/10.1063/1.1722742
https://doi.org/10.1016/0956-7151(92)90091-R
https://doi.org/10.1016/J.CRHY.2013.06.005
https://dspace.mit.edu/handle/1721.1/103184
https://dspace.mit.edu/handle/1721.1/103184
https://doi.org/10.1063/1.1714360
http://refhub.elsevier.com/S1359-6454(24)00718-3/sbref0024
http://refhub.elsevier.com/S1359-6454(24)00718-3/sbref0024
http://refhub.elsevier.com/S1359-6454(24)00718-3/sbref0024
https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1063/1.362343
https://doi.org/10.1063/1.362343
https://doi.org/10.1016/0001-6160(87)90231-8
https://doi.org/10.1016/0001-6160(87)90231-8
https://doi.org/10.1016/S1359-6454(00)00016-1
https://doi.org/10.1016/S1359-6454(00)00016-1
https://doi.org/10.1016/j.scriptamat.2016.01.039
https://doi.org/10.1016/j.scriptamat.2016.01.039
https://doi.org/10.1007/BF00553115
https://doi.org/10.1016/J.ACTAMAT.2012.07.002
https://doi.org/10.1006/jcph.1994.1153
https://doi.org/10.1006/jcph.1994.1153
https://doi.org/10.1016/S0378-4371(98)00377-X
https://doi.org/10.1016/S0378-4371(98)00377-X


[34] C.M. Bishop, R.L. Satet, R.M. Cannon, W.C. Carter, A.R. Roosen, A simple model of 
fully-faceted grain growth and coarsening with non-linear growth laws, Z. Für Met. 
96 (2005) 124–134.
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